ALS Users Meeting, October 20, 2004

Resonant Inelastic X-Ray Scattering and Soft X-Ray Emission studies of Electronic Structure in Thin Film Organic Semiconductors.

Kevin E. Smith

Department of Physics Boston University

Acknowledgements

- James Downes, Yufeng Zhang, Lukasz Plukinski, Shancai Wang, Leyla Colerkerol, Cormac McGuinness, Per-Anders Glans, and Timothy Learmonth
 - ► Department of Physics, Boston University;
- Steven D. Hulbert
 - ► National Synchrotron Light Source, Brookhaven National Laboratory;
- Anne Y. Matsuura
 - ► Air Force Office of Scientific Research

- Research supported by the ACS Petroleum Research Fund and the National Science Foundation.
- Experiments performed at the NSLS on beamline X1B

Motivation

- There is significant technological interest in the development of carbon-based electronic devices.
- Numerous organic compounds are being used and/or studied as electronic materials.
- Detailed synchrotron-based spectroscopic measurements of their electronic structure are generally lacking.
- Photoemission is less than ideal in this regard due to the fact that the photoemission process leaves the organic system in an ionized state.
- Resonant soft x-ray emission holds the promise of accurate and detailed electronic structure measurement.

Compact UHV System for Organic Molecular Beam Deposition (OMBD)

- Custom UHV system attached directly to the main measurement system to allow in-situ growth and characterization. Pressure $\sim 1 \times 10^{-9}$ torr.
- Provides:
 - ▶ 3 or 4 organic evaporators.
 - Quartz thickness monitor.
 - ► Inert gas ion gun + gas manifold system.
 - ► Sample heating & cooling 100K-1000K.
 - Sample load-lock.

Decay of the intensity of elastic scattering of 286.3 eV photons from (ET)₂SF₅CH₂CF₂SO₃-type film

Copper phthalocyanine Cu-Pc

- Complex electronic structure
- Cu²⁺ ion 3d electrons hybridized with ligand (C,N) 2p states

DFT calculation Liao et al, J. Chem Phys. 2001, 114(22), p 9780

Copper phthalocyanine RXES

CuPc - RXES detail

Copper phthalocyanine RXES

Two N sites expected - only 0.4 eV separation

- RXES represents 2p character of C and N states of the valence band
- UPS represents joint or total density of states of the valence band

- RXES represents 2p character of C and N states of the valence band
- UPS represents joint or total density of states of the valence band

- RXES represents 2p character of C and N states of the valence band
- UPS represents joint or total density of states of the valence band

UPS from Chasse *et al*, J. Appl. Phys. 1999, **85**(9), p6589

- RXES represents 2p character of C and N states of the valence band
- UPS represents joint or total density of states of the valence band

Yanagi et al, J. Appl. Phys. 81, 7306 (1997)

O 2p emission

Summary

- Spectroscopic studies of the electronic structure of organic solids must explicitly address beam damage.
- Thin films can be grown in situ by OMBD at synchrotron radiation sources.
- Continuous translation of large area thin films is a viable solution to beam damage issues
 - Marked changes in the measured SXE and XPS spectra are observed between translated and stationary films.
- Data presented for a variety of organic semiconductors: TDATA, QAD, CuPc.
- RSXE a powerful probe of non-ionized electronic structure.....